Automatic Normalisation of Modern French (i.e. from the 17th century)

LREC - 2022

Rachel Bawden
Philippe Gambette
Jonathan Poinhos
Benoît Sagot
Eleni Kogkitsidou
Simon Gabay
What is normalisation?

Application of a predefined convention to smooth out variation. We choose contemporary French as the norm.

Why normalise modern French texts?

- Spelling conventions were not yet fixed, so there is a high degree of variability between texts

- The texts look a lot like contemporary French, but the differences make it hard to apply standard French tools to them

<table>
<thead>
<tr>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
</tr>
<tr>
<td>Normalised</td>
</tr>
</tbody>
</table>

PoS-tagging results when fine-tuning and testing French language model CamemBERT on 17th c. texts
Modern French vs. Contemporary French

• Some trivial changes (e.g. long s)

• Many non-trivial changes (segmentation differences, introduction of “classical” spellings, other changes indicative of language change, etc.)
Previous work on normalisation

- **Word lists, rules and edit-based approaches**
 - Replacing words by others depending on predefined lists or predefined correspondences (manual or automatic) (Baron and Rayson, 2009; Bollmann et al., 2011, Porta et al., 2013).
 - E.g. Levenshtein distance is a strong baseline (Pettersson et al., 2013)

- **MT approaches**
 - Most previous work has focused on character-based (learning correspondences of letters in a word), largely evaluated on normalisation of individual words (Vilar et al., 2007; Scherrer and Erjavec, 2013; Pettersson et al., 2013b; Domingo and Casacuberta, 2021)
 - Statistical MT (SMT) vs. neural MT (NMT): SMT can be superior if little data is available (Domingo and Casacuberta, 2018), but not always the case (Gabay and Barrault, 2020)
Contributions of this paper

1. New benchmark for the task: parallel training data for the normalisation of modern French into contemporary French

2. Development of normalisation models for Modern French: ruled-based, statistical, MT-inspired (statistical and neural)

3. Evaluation metric (symmetrised word accuracy) adapted to MT-inspired models and comparison of all models
• **Sentence-aligned parallel dataset (modern-contemporary French)**

• Genres: Caractères, comédie, tale, correspondence, law, fables, journalism, philosophy, poetry, novel, memoir novel, theology, tragedy, travel

 ▪ Genres only available in test set: medicine, physics

<table>
<thead>
<tr>
<th></th>
<th>#sents</th>
<th>#unique tokens</th>
<th>#unique OOV tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ModFr</td>
<td>Fr</td>
</tr>
<tr>
<td>Train</td>
<td>17.9k</td>
<td>264.3k</td>
<td>263.7k</td>
</tr>
<tr>
<td>Dev</td>
<td>2.4k</td>
<td>40.4k</td>
<td>40.3k</td>
</tr>
<tr>
<td>Test</td>
<td>5.7k</td>
<td>86.4k</td>
<td>86.2k</td>
</tr>
</tbody>
</table>
Normalisation methods

1. Simple rule-based method (regular-expression-based)
 • Manually written based on simple corpus statistics (some purely typographic and others lexical)
 • E.g. ſ → s, ò → om (if followed by m, b or p) and on (if not)

2. Statistical alignment-based model (ABA)
 • More details coming up!

3. MT-based approaches:
 • More details coming up!

★ Optional lexicon-based post-processing step
 • To be applied after the other 3 methods
 • Replace words that match modulo certain regular changes (e.g. accents, long s)
Alignment-based approach (ABA)

- Word-level translation rules learned from an aligned training corpus
- Character-level transformation rules manually designed by observing frequent transformations
- For each word not recognised as being contemporary French:
 - replace by the word in the word-level transformation rule if it exists
 - apply all possible combinations of character-level transformation rules, keep the first word existing in contemporary French, keep the original word otherwise
Advantages:

- Flexible word segmentation: allows for word merging or splitting
- Words are normalised in context (helpful in some cases and even necessary in others):

<table>
<thead>
<tr>
<th></th>
<th>Normalisation example 1</th>
<th>Normalisation example 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>nostre ‘our’</td>
<td>quel malheur est le notre ‘what woe is ours’</td>
<td>Les larmes sont trop peu pour pleurer notre mal ‘The tears are too few to cry (for) our pain’</td>
</tr>
<tr>
<td>appellez ‘call’</td>
<td>N’appellez point des yeux le Galant à votre aide ‘Do not call the Galant for help with your eyes’</td>
<td>...Royaumes, par nous vulgairement appelés Siam ‘...kingdoms, known popularly by us as Siam’</td>
</tr>
</tbody>
</table>
MT-style approaches

- Statistical MT (SMT) - (1) Moses
- Neural MT (NMT) - Fairseq: (2) LSTM and (3) transformer

Extensive hyper-parameter searches:

- Subword segmentation (using sentencepiece and BPE):
 - Best subword segmentation with a vocabulary of 500 (SMT) and 1000 NMT
- Size of the networks (e.g. number of layers, embedding dimensions, etc.)
 - Best models were smaller than the base models used
- Learning rate and batch size
Evaluation

• Most commonly used metric = word/token-level accuracy

• In need of a reproducible implementation and one that is adapted to sentence-level normalisation:
 • Not necessarily a one-to-one token-level alignment
 • Hallucinations need to be penalised (risk of them being all associated with a single reference token)

Symmetrised accuracy:

Ref: Puisqu’ Achille combat, nous allons triompher
Hyp: Puisqu’ Achile combat, et oui nous allons triompher

According to reference tokenisation

<table>
<thead>
<tr>
<th>Puisqu’</th>
<th>Achille</th>
<th>combat</th>
<th>,</th>
<th></th>
<th>nous</th>
<th>allons</th>
<th>triompher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puisqu’</td>
<td>Achile</td>
<td>combat</td>
<td>,</td>
<td>et</td>
<td>oui</td>
<td>nous</td>
<td>allons</td>
</tr>
</tbody>
</table>

Accuracy = 6/7 = 0.86

Symmetrised acc = 0.82

According to hypothesis tokenisation

<table>
<thead>
<tr>
<th>Puisqu’</th>
<th>Achile</th>
<th>combat</th>
<th>,</th>
<th></th>
<th>nous</th>
<th>allons</th>
<th>triompher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puisqu’</td>
<td>Achile</td>
<td>combat</td>
<td>,</td>
<td>et</td>
<td>oui</td>
<td>nous</td>
<td>allons</td>
</tr>
</tbody>
</table>

Accuracy = 7/9 = 0.78
Results

- Baselines already strong
- Best model = SMT
- Neural models do better on OOV words

<table>
<thead>
<tr>
<th>Method</th>
<th>WordAcc (sym)</th>
<th>WordAcc (sym) OOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>72.73</td>
<td>43.00</td>
</tr>
<tr>
<td>+ Leff</td>
<td>86.12</td>
<td>64.84</td>
</tr>
<tr>
<td>Rule-based</td>
<td>89.05</td>
<td>60.22</td>
</tr>
<tr>
<td>+ Leff</td>
<td>90.85</td>
<td>66.51</td>
</tr>
<tr>
<td>ABA</td>
<td>95.14</td>
<td>69.50</td>
</tr>
<tr>
<td>+ Leff</td>
<td>95.44</td>
<td>73.54</td>
</tr>
<tr>
<td>SMT</td>
<td>97.10±0.02</td>
<td>76.64±0.18</td>
</tr>
<tr>
<td>+ Leff</td>
<td>97.24±0.02</td>
<td>78.37±0.20</td>
</tr>
<tr>
<td>LSTM</td>
<td>96.14±0.08</td>
<td>76.69±0.70</td>
</tr>
<tr>
<td>+ Leff</td>
<td>96.25±0.10</td>
<td>78.35±0.79</td>
</tr>
<tr>
<td>Transformer</td>
<td>95.89±0.08</td>
<td>75.73±0.38</td>
</tr>
<tr>
<td>+ Leff</td>
<td>96.01±0.09</td>
<td>77.51±1.00</td>
</tr>
</tbody>
</table>

- Postprocessing (+ Leff):
 - Helps all methods
 - SMT+Leff leads to best OOV scores
Similarity of the approaches

<table>
<thead>
<tr>
<th></th>
<th>Rule-based</th>
<th>ABA</th>
<th>SMT</th>
<th>LSTM</th>
<th>Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule-based</td>
<td>100.00</td>
<td>91.70</td>
<td>90.16</td>
<td>90.00</td>
<td>89.42</td>
</tr>
<tr>
<td>ABA</td>
<td>91.70</td>
<td>100.00</td>
<td>96.17</td>
<td>95.54</td>
<td>95.02</td>
</tr>
<tr>
<td>SMT</td>
<td>90.16</td>
<td>96.17</td>
<td>100.00</td>
<td>97.20</td>
<td>96.90</td>
</tr>
<tr>
<td>LSTM</td>
<td>90.00</td>
<td>95.54</td>
<td>97.20</td>
<td>100.00</td>
<td>97.47</td>
</tr>
<tr>
<td>Transformer</td>
<td>89.42</td>
<td>95.02</td>
<td>96.90</td>
<td>97.47</td>
<td>100.00</td>
</tr>
</tbody>
</table>

- Neural methods most similar (LSTM, Transformer)
- SMT is most similar to Transformer
- ABA most similar to rule-based
How zealous/conservative are the models?

What is better? This is actually task-dependent:

- As an aid for manual normalisation: conservative better
- For a down-stream annotation task (e.g. PoS tagging): zealous better
What sort of differences are there?

Comparison of the best rule-based approach (ABA+Lefff) and best MT approach (SMT+Lefff)

- ABA is less robust to inadequacies in the training corpus
 - E.g. succeeds with *auoient* → *avaient*, but not *avoient* → *avaient* (whereas SMT succeeds)
 - Lacks some rules (e.g. dealing double consonants)

- SMT is in general more “creative”:
 - Some more creative errors (quite say to spot): *ma pêlée ‘pensée’* -> *pmentsée*
 - Language model effect can be too strong (removes some determiners)
 - But handles ambiguity better (because it is contextual)
 - ABA+Lefff: *Car enfin n'attends pas que mes feux redoublez*,
 - SMT+Lefff: *Car enfin n'attends pas que mes feux redoublés*,

- The approaches appear to be complementary - potential for combining the two!
Conclusion and perspectives

• New benchmark for the normalisation of Modern French into contemporary French (dataset, baselines and state-of-the-art models)

• Comparison of different approaches (rule-based and MT-inspired) with different advantages

 • Potential for combining them

 • Further experiments required to test which model is best in different scenarios (i.e. to aid manual normalisation or for downstream tasks).

• Aim to facilitate and encourage research on Modern French
Thank you very much!

Our code and models are freely available:
https://github.com/rbawden/ModFr-Norm

Further information on the FreEm project page:
https://freem-corpora.github.io