Domain Adaptation in Neural Machine Translation using a Qualia-Enriched FrameNet

Alexandre Costa, Mateus Marim, Ely Matos & Tiago Torrent
Federal University of Juiz de Fora
This paper presents two implementations of a methodology for domain adaptation in NMT systems using a qualia-enriched FrameNet as a semantically structured external resource.
The Problem
/// Domain Adaptation
(1) The basketball player scored the lay-up.

(2) The waiter put the bowls on the tray.
Winning_moves

Definition
A competitor or team, the **Athlete**, makes a move that awards points.

Example(s)

Core Frame Elements

FE Core:

- **Athlete [Athlete]**: The individual or team who scores the point.
- **Point [Point]**: Outcome of the successful move played by the **Athlete**.

Non-Core Frame Elements

Relations

Lexical Units

- landing.n
- layout.n
- layup.n
- leap.off.v
- leaping.n
- lock.n

Utensils

Definition
A **Utensil** is a container, a tool or something that is especially for household use. It is created for a specific **Use**. Several properties of the **Utensil** can be specified, such as its **Creator**, **Time_of_creation**, **Name**, **Type**, **Origin**, **Constituent_parts**, **Description**, **Material** of which it is composed, **Quantity** and the **Place** where it is.

Example(s)

Core Frame Elements

FE Core:

- **Utensil [Utensil]**: It indicates a utensil made for a specific **Use**.

Non-Core Frame Elements

Relations

Lexical Units

- saucer.n
- scale.n
- tray.n
Frame-to-frame relations

/// Winning_moves inherits Moves

/// Moves is a subframe of Sports_event

/// Moves uses Athletes and Sports
Frame element-to-frame relation

/// The Athlete FE in Winning_moves frame is linked to the following frames

Athletes (LUs: athlete.n, competitor.n)

Athletes_by_sport (LUs: boxer.n, golfer.n)

Athletes_by_position (LUs: center.n, wing.n)
Frame-to-frame and FE-to-frame relations are not LU-specific.

The relation between Winning_moves and Athletes is not able to represent that the lay-up is a winning move performed by a basketball player.
Ternary Qualia Relations
/// FrameNet meets the Generative Lexicon
Qualia

Four qualia roles originally proposed

Formal
Telic
Constitutive
Agentive

\(\text{Qualia} \)

\(\text{pizza.n} \)

\(F = \text{food.n} \)
\(T = \text{eat.v} \)
\(C = \text{flour.n} \)
\(A = \text{cook.n}, \text{pizza restaurant.n} \)

\(\text{(type of)} \)
\(\text{(made for)} \)
\(\text{(made of)} \)
\(\text{(created by)} \)
Intentionally_act

Definition
This is an abstract frame for acts performed by sentient beings.

Example(s)

Core Frame Elements

<table>
<thead>
<tr>
<th>FE Core:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent [Agent]</td>
</tr>
<tr>
<td>semantic_type: @sentient</td>
</tr>
<tr>
<td>Someone who performs the intentional act.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FE Core-Unexpressed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act [Act]</td>
</tr>
<tr>
<td>semantic_type: @state_of_affairs</td>
</tr>
<tr>
<td>It identifies the Act that the Agent performs intentionally.</td>
</tr>
</tbody>
</table>

basketball player

lay up
Scylla
/// domain adaptation using frames and qualia
A Two-Step Process

/// Frame Disambiguation
/// Terminology Injection

Pre-Processing Stage
Post-Editing Stage
1. Input sentence is parsed for dependencies
2. MWEs are retrieved from FN-Br
3. Lemma clusters are defined
4. LUs associated to lemmas are retrieved
5. Qualia relations between LUs are retrieved
6. Frames evoked by each LU are retrieved
7. FE-to-frame relations are retrieved
O jogador de basquete converteu a bandeja.

The basketball player scored the lay-up.
O garçom colocou as tijelas na bandeja.

The waiter put the bowls on the tray.
Terminology Injection during the pre-processing stage
Scylla-T

/// Terminology Injection during the post-editing stage
Evaluation
/// domain adaptation in sports for the br-pt/en language pair
Dataset

/// 50 br-pt source sentences featuring at least one polysemous lemma
/// 50 en reference translations
/// 72.4% of in-domain frame preservation
Experiments & Metrics

/// Source sentences were submitted to a commercial NMT API (baseline) and to Scylla-S and Scylla-T

/// Machine translations were evaluated for BLEU, TER and HTER (using professional translators)
<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Scylla-S</th>
<th>Scylla-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLEU</td>
<td>53.13</td>
<td>48.12</td>
<td>53.66</td>
</tr>
<tr>
<td>TER</td>
<td>36.23</td>
<td>42.63</td>
<td>36.47</td>
</tr>
<tr>
<td>HTER</td>
<td>13.80</td>
<td>10.44</td>
<td>7.38</td>
</tr>
</tbody>
</table>
The **winger** is the player with less time to think about setting up a strike.
Discussion

O ponta é o jogador que menos tempo tem para pensar na armação de uma jogada

Source sentence

The forward is the player who has less time to think about setting up a move

Baseline system (TER=26.66 / HTER=0.08)
Discussion

O ponta é o jogador que menos tempo tem para pensar na armação de uma jogada.

Source sentence

The wing is the player who has less time to think in the setup of a play.

Scylla-S (TER=53.33 / HTER=0.06)
Discussion

O ponta é o jogador que menos tempo tem para pensar na armação de uma jogada

Source sentence

The winger is the player who has less time to think about setting up a play

Scylla-T (TER=20.00 / HTER=0.00)
Conclusions and Limitations
Scylla-T improves the performance of the baseline system by 47% in HTER

No fine tuning is needed

Dataset is small and experiments represent a proof of concept

Baseline is a commercial system
Thank you!

tiagotorrent.com

@TorrentTiago