1. Referring Expression Generation (REG) in context

REG-in-context: Given an intended referent and a discourse context, how do we generate appropriate referring expressions (REs) to refer to the referent at different points in the discourse? (Belz and Varges 2007)

Rule-based & feature-based studies often approach REG in 2 steps:
- Choosing the referring expression form (REF), one of: proper noun, definite noun phrase, or pronoun
- Determining the content of that form

2. A REG-in-context example

Homer Simpson (born May 12 1946) is the main protagonist and one of the five main characters of The Simpsons series (or show). Homer, Simpson is the spouse of Marge Simpson and father of Bart, Lisa and Maggie Simpson. Homer is overweight (said to be ~240 pounds), lazy, and often ignorant to the world around him. Homer_Simpson.

3. REG-in-context is a non-deterministic task

For many contexts, there is not a single correct REF. How do we know?
- Human choices vary, even for simple texts.
- Machine systems do not converge on singleton distributions, even when trained on big corpora.

Algorithms for REG-in-context are generally evaluated against corpora of written texts, offering a single correct response in the given context.

4. Referring Expression Form Distributions (REFDs)

5. 2-Dimensional Corpora

To determine the distributions over REFs at a particular point, we must aggregate multiple RE form choices as the repeated measures of a single random variable. We can create two different kinds of corpora of variation:
- **Parallel** Keep identical context and referent. Find REFDs by asking distinct (but similar) informants (I1, I2, I3) to choose RE forms. OR
- **Longitudinal** Generalise over contexts using features. Find REFDs by aggregating all REF choices with the same combinations of values for features (Fa,Fb,Fc).

6. Parallel vs Longitudinal Corpora

7. VaREG corpus and studies

VaREG corpus (Castro Ferreira, Krahmer, and Wubben 2016a)
- 36 texts (563 REs) in 3 genres: news texts, reviews of commercial products, and Wikipedia texts
- Approximately 20 participants filled each RE gap. So it is a latitudinal corpus.

Problem: a lot of human time is required to build a corpus of parallel human judgements.

Their study
- showed substantial variation between participants in their REFD entropies,
- used Jensen-Shannon Divergence to evaluate how well model REFDs matched human REFDs from the parallel corpus (Castro Ferreira, Krahmer, and Wubben 2016b).

8. The current study

GOAL: generate REFDs of human free variation from standard corpora (without expensive parallel REF judgements).

Method: make longitudinal corpora of REFDs using feature-value combinations to aggregate REF choices into distributions

Corpora: (1) VaREG:long, (2) VaREG:lat, (3) WSJ

Our study
- **Learning algorithms:** (1) Random Forest, (2) XGBoost, (3) CatBoost
- **Feature set:** grammatical role, form of the antecedent, animacy, recency

9. Pattern of Entropies

10. Comparing Evaluations

<table>
<thead>
<tr>
<th></th>
<th>VaREG Parallel</th>
<th>Longitudinal</th>
</tr>
</thead>
<tbody>
<tr>
<td>JSD (human)</td>
<td>0.094</td>
<td>0.065</td>
</tr>
<tr>
<td>JSD (XGBoost)</td>
<td>0.086</td>
<td>0.061</td>
</tr>
<tr>
<td>JSD (CatBoost)</td>
<td>0.076</td>
<td>0.059</td>
</tr>
</tbody>
</table>

JSD divergences between machine learning algorithms on parallel and longitudinal REFD corpora. Lower divergence values indicate more-similar distributions. Both corpora give the same ranking of algorithm accuracy.

11. Conclusion

Longitudinal corpora parallel structural properties and evaluative patterns of human parallel corpora.

Longitudinal corpora open the door to evaluating REG-in-context models by distribution, rather than using maximum a posteriori categorical choices.

References