We denote the pretrained word embedding of a term we consider only the top-related terms and distractor terms. Information about the both represent the same category. Therefore, it will be tor terms. However, such randomly selected distractor terms. Nonetheless, we assume

\[\text{reconstructability} \]

and

\[\text{obfuscity} \]

are query

\[Q' \]

related terms

\[X_1, \ldots, X_n \]

and distractor terms

\[Y_1, \ldots, Y_n \]

using the above-described methods and retrieve search results for all those terms. (idea: the search engine will find it difficult to guess A because of the distractor terms.) We will discard search results for the distractor term, and reconstruct the search results for A as the union of the search results retrieved for the related terms

\[D'(A) = \bigcup_{i=1}^{n} D(X_i). \]

\[\frac{\text{obfuscity}}{\text{reconstructability}} \]

is in the inverse (trade-off) relationship given by

\[\log \rho = \frac{ct}{2} - 2 \left(1 - \alpha \right) \| \| A \| \| - \log 2 \]

-\[\text{A human evaluation shows that even human annotators find it difficult to predict the original user queries using the terms found by the proposed method.} \]

-\[\text{The proposed method can be extended other types of data such as document or images, using embeddings to implement anonymized multimodal retrieval methods.} \]