Development of a Multilingual CCG Treebank via Universal Dependencies Conversion
Tu-Anh Tran and Yusuke Miyao
The University of Tokyo

Summary
We propose a rule-based algorithm to create CCG treebanks from UD treebanks for many languages.

Binarization
Binarize dependency trees based on a pre-defined obliqueness hierarchy to match the binary structures of CCG derivations.

Category Assignment
Apply hand-crafted rules that assign CCG categories to noun phrases, modifiers, function words, and punctuation marks.

Category Inference
Apply CCG's combinatory rules to infer the categories of unassigned constituents.

Category Reassignment via Majority Voting
Gather votes from assigned categories in Phase 1 to decide the most common word order of a treebank. Based on the most common word order, reassign CCG categories to predicates.

Parsing and Filtering
Apply a non-statistical CCG parser to generate candidate parses given currently assigned categories. Filter out parses that do not match our binarized trees and hand-crafted rules in Phase 1.

Results
Coverage and parsing performance on select 21 CCG treebanks of 21 languages.

Example with Long-distance Dependency

Conclusion
- Limitations:
 - Languages with flexible word order
 - Long-distance dependencies with no explicit traces
 - Argument/adjunct distinction for PP
 - Crossing dependencies

- Ideas for the future:
 - Incorporating Enhanced Dependencies
 - Incorporating Universal Proposition Banks*

* https://universalpropositions.github.io/