LARD: Large-scale Artificial Disfluency Generation

T. Passali, T. Mavropoulos, G. Tsoumakas, G. Meditskos, S. Vrochidis

Introduction

- Virtual assistants and spoken dialogue systems are increasingly used in many applications.
- **Disfluencies**: Interruptions, self-corrections, false-starts, repetitions etc.
- **Disfluency detection**: Detection of disfluent regions in spoken language transcripts

Motivation

- Existing datasets do not contain sufficiently all the different types of disfluencies.
- **Example**: Switchboard [1] contains only 40K/160K utterances with more than 50% of repetitions (most trivial class).
- Existing augmentation techniques use simplistic rules and are not capable of generating all different kinds of disfluencies.

Generating artificial disfluencies from fluent text

- **Replacement Algorithm**
 - Given a fluent sequence:
 - 1. Randomly extract a repair candidate (noun, verb, adjective)
 - 2. Generate synonyms and antonyms for the selected candidate
 - 3. Replace with a synonym or antonym with/without a repair cue

- **Restart Algorithm**
 - Given two or more fluent sequences:
 - 1. Randomly pick two sequences
 - 2. Split the first sequence in a random position
 - 3. Combine the broken sequence with the second unbroken one

LARD Dataset

<table>
<thead>
<tr>
<th>Dataset Statistics</th>
<th># repetitions</th>
<th>23398</th>
<th># replacements</th>
<th>23398</th>
<th># restarts</th>
<th>23398</th>
<th># fluencies</th>
<th>23398</th>
<th># total</th>
<th>95992</th>
</tr>
</thead>
</table>

A new large-scale artificial and balanced dataset for disfluency detection based on an existing fluent dataset: Schema-Guided Dataset [2].

Results

<table>
<thead>
<tr>
<th></th>
<th>Prec</th>
<th>Rec</th>
<th>FL</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection</td>
<td>97.63</td>
<td>97.61</td>
<td>97.62</td>
<td>-</td>
</tr>
<tr>
<td>Classification</td>
<td>97.31</td>
<td>97.30</td>
<td>97.29</td>
<td>-</td>
</tr>
<tr>
<td>Extraction</td>
<td>98.12</td>
<td>96.60</td>
<td>97.30</td>
<td>-</td>
</tr>
<tr>
<td>Correction</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>86.48</td>
</tr>
</tbody>
</table>

Table 2: Experimental results on LARD dataset

<table>
<thead>
<tr>
<th></th>
<th>Switchboard (detection)</th>
<th>LARD (detection)</th>
<th>LARD (classification)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitions</td>
<td>85.42</td>
<td>99.57</td>
<td>99.5</td>
</tr>
<tr>
<td>Replacements</td>
<td>54.52</td>
<td>99.67</td>
<td>98.39</td>
</tr>
<tr>
<td>Restarts</td>
<td>19.6</td>
<td>95.08</td>
<td>93.89</td>
</tr>
</tbody>
</table>

Table 3: Accuracy (%) for different disfluency classes (repetitions, replacements and restarts) and models trained on different datasets.

References

Acknowledgements

This work is partially funded by the European Commission as part of its H2020 Programme, under the contract number 870930-IA WELCOME Project.

[welcome-h2020.eu]