Dynamic Human Evaluation for Relative Model Comparison

Thórhildur Thörleiksdóttir, Cedric Renggli, Nora Hollenstein, Ce Zhang

1ETH Zürich; 2University of Copenhagen

Evaluation of NLG Models

- Human evaluation is regarded as the primary metric
- Current limitations
 - Expensive and time consuming
 - Lack of consensus
 - Statistically underpowered

Model Comparison

- Streamline human evaluation for text generation
- Conclude better model with high probability

Evaluation of NLG Models

- Human evaluation is regarded as the primary metric
- Current limitations
 - Expensive and time consuming
 - Lack of consensus
 - Statistically underpowered

Model Comparison

- Streamline human evaluation for text generation
- Conclude better model with high probability

Results

- Single random worker per request requires the least labelling effort when deciding the better model with 0.999 probability
- Assigning different workers per request enables trivial parallelization

The human evaluation study indicated that assigning one random worker per request requires the least labelling effort in both model comparisons with a high probability (0.9999)

Simulated and real human evaluation show similar trends in terms of labelling efforts for proposed decision method

Simulating human evaluation can provide valuable insight without any cost

Agent-Based Human Evaluation

Simulate Two-Choice Human Evaluation

- Assume two generative models: A and B
- Varying workers evaluate provided request pairs \((a, b)\)
- Model performance: Proportion of selected outputs w.r.t. the number of requests evaluated

Formulation of the Evaluation Task

- Request difficulty \(d = 1\), Easy to distinguish \(a\) as the better item compared to \(b\)
- Request difficulty \(d = 0\), Cannot distinguish \(a\) being better than \(b\) (and vice versa)
- Request difficulty \(d = -1\), Easy to distinguish \(b\) as the better item compared to \(a\)
- Worker capacity \(c = 0\), Incapable annotator, not fluent in English
- Worker capacity \(c = 1\), Highly capable annotator, fluent in English
- Compute the product to simulate the item selection \(\rho = c \cdot d\)
- Transform to probability \(P(a) = \frac{e^\frac{1}{\rho}}{1 + e^\frac{1}{\rho}}\)
- Perform a single Bernoulli Trial \(P(1) = P(a)\)
- Perform a single Bernoulli Trial \(P(0) = P(b)\)

Decision Boundaries

- One-sided version of Hoeffding inequality \(\delta \leq e^{-2n\delta^2}\)
 - \(\delta\): probability of the observed proportion not being within the error bounds
 - \(t\): the width of the error bound
 - \(n\): number of requests

Labelling Strategies

- Fixed Worker
- One Worker
- N Workers (Majority Vote)
- Max Three Workers

Experiment setup

- Simulation experiment consists of 1000 iteration for all labelling strategies where identical requests are evaluated with varying worker capabilities
- Sample 100 capabilities from \(\text{Unif}(0, 1)\)
- Run simulation experiments with three different difficulty levels

Case Study: Evaluating Controlled Text Generation

- Systematic control for semantic and syntactic aspects of generated text
- Train several versions of attribute-control text generation models
- Two model comparisons: V1 vs CGA and V2 vs CGA

Experiment setup

- 500 request pair for each model comparison
- Evaluation Criteria: Naturalness
 - Could a native speaker have produced the given text
 - 10 workers evaluate each request pair on Amazon Mechanical Turk
 - Sample collected judgments over 100 iterations

Simulate Two-Choice Human Evaluation

- Assume two generative models: A and B
- Varying workers evaluate provided request pairs \((a, b)\)
- Model performance: Proportion of selected outputs w.r.t. the number of requests evaluated

Formulation of the Evaluation Task

- Request difficulty \(d \sim N(\mu, \sigma^2)\)
 - \(d = 1\), Easy to distinguish \(a\) as the better item compared to \(b\)
 - \(d = 0\), Cannot distinguish \(a\) being better than \(b\) (and vice versa)
 - \(d = -1\), Easy to distinguish \(b\) as the better item compared to \(a\)
- Worker capacity \(c \sim \text{Unif}(a, b)\)
- Worker capacity \(c = 0\), Incapable annotator, not fluent in English
- Worker capacity \(c = 1\), Highly capable annotator, fluent in English
- Compute the product to simulate the item selection \(\rho = c \cdot d\)
- Transform to probability \(P(a) = \frac{e^\frac{1}{\rho}}{1 + e^\frac{1}{\rho}}\)
- Perform a single Bernoulli Trial \(P(1) = P(a)\)
- Perform a single Bernoulli Trial \(P(0) = P(b)\)

Decision Boundaries

- One-sided version of Hoeffding inequality \(\delta \leq e^{-2n\delta^2}\)
 - \(\delta\): probability of the observed proportion not being within the error bounds
 - \(t\): the width of the error bound
 - \(n\): number of requests

Labelling Strategies

- Fixed Worker
- One Worker
- N Workers (Majority Vote)
- Max Three Workers

Experiment setup

- Simulation experiment consists of 1000 iteration for all labelling strategies where identical requests are evaluated with varying worker capabilities
- Sample 100 capabilities from \(\text{Unif}(0, 1)\)
- Run simulation experiments with three different difficulty levels

Case Study: Evaluating Controlled Text Generation

- Systematic control for semantic and syntactic aspects of generated text
- Train several versions of attribute-control text generation models
- Two model comparisons: V1 vs CGA and V2 vs CGA

Experiment setup

- 500 request pair for each model comparison
- Evaluation Criteria: Naturalness
 - Could a native speaker have produced the given text
 - 10 workers evaluate each request pair on Amazon Mechanical Turk
 - Sample collected judgments over 100 iterations