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OBJECTIVES
1. Automatically categorise patients by clinical pheno-

type (clinical conditions found in clinical notes)

2. Effective and efficient multilingual data augmen-
tation for low-resource languages without sharing
data

3. Use pre-defined CCSR categorization where each
category represents a set of ICD codes. Each cate-
gory may represent a disease or a set of e.g., differ-
ent arrhythmias or ill defined diseases.
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• Low resource datasets benefit from cross-lingual
transfer

• Rare phenotypes gain most out of cross-lingual
transfer

• Adapters and translation are both suitable methods
for cross-lingual knowledge transfer.

• Adding more data does not necessarily improve
results

• Translation quality and translation consistency are
important; Abbreviations and style of writing have
an impact on translation

• Use adapters when computational complexity is a
limiting factor

• If an in-domain translation system is available,
translate the text to English and then use an in-
domain monolingual encoder

METHODS
We restrict our approaches to sequential transfer learning,
since it allows to share models across clinics without hav-
ing to share patient data explicitly.
We compare:

• Cross-Lingual encoder [1, 2] (original language)
XLM-R + Adapter

• Domain-specific encoder [3] (english translation)
PubMedBERT, Spanish B. RoBERTa

• Monolingual encoders [4, 5, 6]
Spanish BERT, GreekBERT

• Cross-lingual data augmentation (original lan-
guage)

DATASETS

Mimic III - English Language

Mimic III [7] contains de-identified Electronic Health
Records (EHR) data including clinical notes in English
from the Intensive Care Unit (ICU) of Beth Israel Dea-
coness Medical Center in Massachusetts between 2001
and 2012.

CodiEsp - Spanish Language

The CodiEsp dataset [8] consists of 1,000 clinical case
studies manually selected by doctors and cover a diverse
set of medical specialties. The notes are provided in both
the original Spanish language and an English translation.

AHEPAcardio - Greek Language

is a collection of around 2,400 discharge summaries and
originates from the cardiology clinic of the AHEPA Uni-
versity Hospital in Greece.

Clinical Note Statistics

Train Dev Test Ø Length

CodiEsp 656 165 175 351
Ahepa 1,592 402 393 257
Mimic 24,758 6,187 6,182 649

RESULTS

Model Clinical Phenotyping
Macro-AUC [%] Macro PR-AUC [%]

Single Dataset Training
Monolingual Spanish BERT (C) 82.00 25.91
Spanish Biomedical Clinical RoBERTa (C) 84.58 29.89
XLM-R (C) 56.64 5.28
XLM-R + Adapters (C) 61.96 6.43
Translation + PubMedBERT (CT ) 83.45 29.54

Multi Dataset Training
XLM-R (M Ñ C) 83.52 25.96
XLM-R (M Ñ A Ñ C) 83.82 25.96
XLM-R + Adapters (M Ñ C) 85.63 34.41
XLM-R + Adapters (M Ñ A Ñ C) 83.90 32.22
Translation + PubMedBERT (M Ñ CT ) 90.95 43.13
Translation + PubMedBERT (M Ñ AT Ñ CT ) 90.40 41.98

Table 1: Performance for CodiEsp. M: Mimic, A: Ahepa and C:
CodiEsp. The order represents the fine-tune order. The subscript
T means that the English translation of the texts is used and oth-
erwise the original language. The approach which yields the
strongest results is the sequential fine-tuning of the Domain spe-
cific Encoder first with Mimic and then with the English trans-
lation of CodiEsp.

Model Clinical Phenotyping
Macro-AUC [%] Macro PR-AUC [%]

Single Dataset Training
Monolingual Greek BERT (A) 90.18 56.22
XLM-R (A) 60.45 12.31
XLM-R + Adapters (A) 56.60 10.30
Translation + PubMedBERT (AT ) 83.15 37.10

Multi Dataset Training
XLM-R (M Ñ A) 89.87 50.23
XLM-R (M Ñ C Ñ A) 90.03 51.15

XLM-R + Adapters (M Ñ A) 90.15 54.45
XLM-R + Adapters (M Ñ C Ñ A) 91.50 57.63

Translation + PubMedBERT (M Ñ AT ) 86.20 45.14
Translation + PubMedBERT (M Ñ CT Ñ AT ) 88.75 49.90

Table 2: Performance for Ahepa. M: Mimic, A: Ahepa and C:
CodiEsp. The order represents the fine-tune order. The sub-
script T means that the English translation of the texts is used
and otherwise the original language. The approach which yields
the strongest results is the sequential fine-tuning of the Cross-
lingual Encoder plus Adapter on Mimic, CodiEsp and Ahepa in
original language.
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