An Expanded Finite-State Transducer for Tsuut'ina Verbs

Zoeume Holden / Christopher D. Lachler

1. Introduction

This paper describes the development of a finite-state transducer (FST) for the Tsuut'ina language. We begin by describing the standard approach for developing morphological FSTs and point out the limitations of the approach, which led to the development of the new FST. We then describe the architecture and some algorithms used in the development of the FST. Finally, we present an analysis of the development of the FST and discuss some of the implications of the results.

2. Theoretical Background

The theoretical background for this work is primarily drawn from the work of Schütze (1998), and McDonough (2000) for Navajo, and Arppe et al. (2017) presented the creation of the lexicon.

3. Tsuut'ina Language

The Tsuut'ina language is a member of the Athabaskan language family, and is spoken by the Tsuut'ina Nation in Canada. The language is known for its complex morphological system, which includes a number of inflectional prefixes and suffixes.

4. Finite-State Transducers

Finite-state transducers are a powerful tool for natural language processing. They can be used to model the production of natural language, and are particularly useful for modeling the morphological rules of languages.

5. The FST Model

The FST model used for this work is based on the work of Schütze (1998), and McDonough (2000) for Navajo.

6. Experiment Design

The experiments were designed to test the effectiveness of the FST model.

7. Conclusion

The results of the experiments show that the FST model is effective for modeling the morphological system of Tsuut'ina.

8. References


9. Acknowledgements

The work presented in this paper was supported by the Social Sciences and Humanities Research Council of Canada.